Package: countDM 0.1.0

countDM: Estimation of Count Data Models

The maximum likelihood estimation (MLE) of the count data models along with standard error of the estimates and Akaike information model section criterion are provided. The functions allow to compute the MLE for the following distributions such as the Bell distribution, the Borel distribution, the Poisson distribution, zero inflated Bell distribution, zero inflated Bell Touchard distribution, zero inflated Poisson distribution, zero one inflated Bell distribution and zero one inflated Poisson distribution. Moreover, the probability mass function (PMF), distribution function (CDF), quantile function (QF) and random numbers generation of the Bell Touchard and zero inflated Bell Touchard distribution are also provided.

Authors:Muhammad Imran [aut, cre], M.H. Tahir [aut], Saima Shakoor [aut]

countDM_0.1.0.tar.gz
countDM_0.1.0.zip(r-4.5)countDM_0.1.0.zip(r-4.4)countDM_0.1.0.zip(r-4.3)
countDM_0.1.0.tgz(r-4.4-any)countDM_0.1.0.tgz(r-4.3-any)
countDM_0.1.0.tar.gz(r-4.5-noble)countDM_0.1.0.tar.gz(r-4.4-noble)
countDM_0.1.0.tgz(r-4.4-emscripten)countDM_0.1.0.tgz(r-4.3-emscripten)
countDM.pdf |countDM.html
countDM/json (API)

# Install 'countDM' in R:
install.packages('countDM', repos = c('https://imranshakoor.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 179 downloads 21 exports 11 dependencies

Last updated 2 years agofrom:ecda14e010. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winOKNov 16 2024
R-4.5-linuxOKNov 16 2024
R-4.4-winOKNov 16 2024
R-4.4-macOKNov 16 2024
R-4.3-winOKNov 16 2024
R-4.3-macOKNov 16 2024

Exports:bell_mledata_criminaldata_sbirthdbelltdzibelltmle_borelmle_btmle_poissonmle_zibellmle_zibelltmle_zipmle_zoibellmle_zoipmle.bellpbelltpzibelltqbelltqzibelltrbelltrzibelltTP

Dependencies:digestgenericslamWlatticemaxLikmiscToolsnumbersRcppRcppParallelsandwichzoo